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Abstract

A simple tetrahedron model is used to study the effect of non-Gaussian chains on fluctuations of junctions in bimodal networks. The four
chains are assumed to meet at a junction with their other ends being fixed at the vertices of the tetrahedron. It is assumed that the angles
between mean end-to-end vectors of all four chains connected at the junction are tetrahedral, but the lengths of edges of the tetrahedron may
differ due to the difference in the lengths of the chains. The central junction is free to fluctuate, subject to the constraints imposed by the
pendant chains. The long chains are chosen to be Gaussian. The short chains are assumed to be non-Gaussian. Calculations show that the non-
Gaussian nature of the short chains imposes severe restrictions on the fluctuations of the central junction. The strength of these restrictions
directs attention to the importance of anharmonic modes in networks. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

The significant progress in the synthesis of polymeric
materials allows for the design of well characterized
networks by using various end-linking techniques [1—4].
Of particular importance is the end linking of mixtures of
long and very short chains to form bimodal networks [5].
Experimental results on bimodal polydimethylsiloxane
networks show [5] that they have highly desirable mechan-
ical and ultimate properties such as increased modulus,
strength and ductility depending on the composition,
relative lengths of the short and the long chains, spatial
heterogeneity, junction functionality, temperature and the
degree of swelling. Analysis of experimental data shows
that the improvements observed in the ultimate properties
depend predominantly on the finite extensibility or the non-
Gaussian nature of the short chains reached at high degrees
of deformation. The effect of the non-Gaussian chain
behavior on bimodal network properties have been studied
theoretically by several investigators [6—9]. However, in all
of these studies, the junctions have been assumed to be
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rigidly embedded in the network. This assumption is unrea-
listic in as much as the junctions exhibit wide ranges of
fluctuations. For unimodal Gaussian networks, the extent
of fluctuations and their relation to network topology were
studied in detail [10—12]. Spin echo neutron scattering
experiments [13] on polydimethylsiloxane networks clearly
demonstrate that junction fluctuations are substantial, both
statically and dynamically. For bimodal Gaussian networks,
the extent of fluctuations of junctions has been studied by
Higgs and Ball [14] and by Kloczkowski et al. [15]. The
theory of molecular orientation in deformed bimodal
networks was developed by Bahar et al. [16] Theoretical
treatment of trimodal elastomeric networks has been
recently proposed by Erman and Mark [17].

The aim of the present paper is to investigate the fluctua-
tions of junctions in bimodal networks when a fraction of
the chains are non-Gaussian. A rigorous treatment of the
complete bimodal non-Gaussian network tree becomes
rather complicated, however. Therefore, we propose a
simple model of a tetrahedron, similar to the Flory—Rehner
tetrahedron [18], with four fixed vertices as the four junc-
tions and allow only a central junction to fluctuate. Even in
this simplified case, several mathematical difficulties are
encountered and simplifying assumptions have to be
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Fig. 1. The modified version of the Flory—Rehner tetrahedron model
studied in this paper. The four chains which meet at junction £ may have
two different lengths.

made. The proposed model may serve as a starting point for
the more complicated theories in the future studies of this
problem.

2. The model and assumptions

The model is based on a modified version of the Flory—
Rehner tetrahedron [18] shown in Fig. 1. Four chains shown
by the heavy lines and numbered from one to four in Fig. 1
meet at a central junction E which is assumed to fluctuate.
The junctions at the other ends of the chains are at vertices
A, B, C and D of the tetrahedron. These points are assumed
to be fixed. The coordinate system shown in Fig. 1 is a
tetrahedron-based system chosen such that the plane BCD
lies in the x—y plane and the z-axis passes through the fourth
vertex A. The locations of the vertices are chosen subject to
the following two conditions:

(i) the time averaged forces exerted by the chains AE, BE,
CE and DE on the junction E is zero, and

(ii) the angles between four lines from A, B, C and D to
the average location of the central junction are tetra-
hedral. The chains are numbered such that the first ¢g
are short and the rest, ¢ = 4 — ¢, are long. The long
chains are assumed to be Gaussian and the short ones
non-Gaussian. These conditions are described in more
detail later.

A similar model of a micro-network was used by Adolf

and Curro [19] to study the effect of topological constraints
on junction fluctuations in uniaxial extensions.

3. Theory

The distribution function for long chains is given as

W) = Cy exp| —nr’] )

and that for the short chains by
W(r) = Cy exp| ~ysr” = (Br*)'] @

where n is an integer with n =2, y; = 3(r?),/2, and the
subscripts L and S stand for long and short chains, respec-
tively. In the following formulation, these subscripts will be
replaced by indices from one to four. The symbols C; and C,
in Egs. (1) and (2) are normalization constants and (r?), is
the mean square value of the end-to-end vector of the ith
chain in the undeformed state.

The expression given by Eq. (2) is a generalization [9] of
the Fixman—Alben distribution function [20]. The Fixman—
Alben distribution (n = 2) is the simplest and the most
natural representation for non-Gaussian chains, because
the distribution of the end-to-end vector r of polymer chains
depends only on even powers of r, and the quartic term r*" is
the lowest level correction to the Gaussian behavior.

The probability of the four chains of the tetrahedron to
meet at the central junction is the product of the probabil-
ities given by Eqgs. (1) and (2) for the respective chains. Thus

W(R) = C exp[ - %R, —R)’> — (R, — R)

s
— 13R; — R’ — 3R, — R’ = > B'(R; — R)Z"]
i=1

3

where R is the position vector of the central junction and R,
R,, R3 and Ry are the position vectors of the vertices of the
tetrahedron. The indices also serve as the labels for the four
chains, the first ¢ of which are short. The normalization
constant C in Eq. (3) is a product of constants C; and C, for
long and short chains C = Cf ~%s cj’ S where 4 — ¢g and ¢
are the numbers of long and short chains in the tetrahedron.
The free energy of the system is obtained as

AA = —ksT In W(R) )

Minimizing the free energy with respect to R we find that
the mean position R of the fluctuating junction satisfies the
following equation

4 ¢s
22 ¥(R; = R)) + 2n Z B'R,—R)" =0 3)
i=1 i=1

The distribution function W(R) may be written in terms of
the fluctuations AR of R from the mean position

R=R+ AR ©)

as

4 s
W(R) = C exp[ =D i — AR = > B'(F; — AR)Z"]
i=1 i=1
(7)
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Here,
f, =R - R ®)

is the mean end-to-end vector for the ith chain in the tetra-
hedron. From the assumption that the angles between mean
chain vectors are tetrahedral, we have

1
£ = — 5|6 ©)

forany 1 =i,j=4,i#].
The expression given by Eq. (7) may be rearranged as

W(R)

4
=C exp{ = yi[f? — 2F-AR + (AR)Z]
i=1

i Z Z( )(k)f?%—2f,~AR>""<AR>2”‘2"}
o 10)

In order to simplify the derivations in the rest of the paper
we take as a first approximation n = 2, which means that the
non-Gaussian term has a quartic (r4) form. Eq. (10) then
simplifies to

4
WR) = C exp{ R

i=1

2F-AR + (AR)Z]
$s

= > B[F +4FE-ARY + (AR — 47 (F-AR)
i=1

+ 273 (AR)? — 4(1"[~AR)(AR)2]} (11)

Terms that do not depend on AR in Eq. (11) may be incor-
porated into the new constant as

Ps
=C exp[ Z Vi = Bsz‘] (12)
i=1
The minimization of the free energy gives

4 s
2 ¥ (F-AR) + 4> B’F(F-AR) = 0 (13)
i=1

i=1

which leads to the following expression for the fluctuation
distribution function

W(AR)
bs
=’ exp{ — (¢sys + dLWIAR) — > B
i=1

x [4(fi-AR)2 + 272(AR)® — 4(F-AR)(AR)? + (AR)4]}

(14)

The dot product between the mean vectors and the fluctua-
tion vector may be written as

F;-AR = |F;||AR| cos Oz (15)

where 0 is the angle between the direction of the end-to-
end vector for ith short chain and the fluctuation vector. We
choose the coordinate system of the tetrahedron such that
the mean end-to-end vector r; of the first short chain lies
along the z-axis. Designating the polar angles of the four
mean vectors by

6, =0 =0
0, = arccos(—1/3) ¢, =0
0; = arccos(—1/3) 3 =2m/3
0, = arccos(—1/3) ¢y = 4m/3

(16)

and the polar angles of the vector AR by 6y by ¢, we can
write the relations

cos ;g = cos g (17)

cos b = ——cos O +

VB
3 Tsm Or cos g

1 8
cos g = — gcos g + gsin O cos(Pr — 2m/3)

1 8
- gcos g + gsin Or cos(Pr — 4/3)

The distribution function for fluctuations AR may be written
as

cos O =

WAR) = C' expf — (ds7s + ALy )AR)
— G5 B[4 AR F (s g, ) + 2R(AR)’

— 47s(AR) Glds: O ) + AR} (18)

The functions F(¢g; 0r, ¥yr) and G(d¢g; g, ¥r) depend
on the number of short chains in the tetrahedron and
on the direction of the fluctuation vector AR. The four
different types of tetrahedra will be denoted by S|Lj,
S,L,, S;L; and S4 where S;L,, represents the tetrahedron
with k short and m long chains. The functions F and G
for different tetrahedra are given by Egs. (A1)-(A4) in
Appendix A.

Eq. (18) contains terms up to the quartic in AR. The
cubic and quartic terms may be omitted if the fluctuations
are small. With this approximation, it becomes possible
to obtain relatively simple expressions for the mean
square fluctuations of the central junction. The mean square
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fluctuation for the central junction is given by the formula

21 T _
[ W(AR)(AR)? dAR 3 ,[0 dibg ,[0 dbg sin HR{d)S'yS + pLyL + 287 dsT[1 + 2F (s O, d’R)]} ”

(ARY?) = =

19)

W(AR)dAR 2 (> ™ , _ Y
J [ aune | sin f s + b+ 28057300 + 27(0s: b0}
In Eq. (19) the integration over the variable AR have been For S,L,
performed analytically, due to the approximation neglecting
the higher (than the quadratic) powers of AR. The double (AR g = <(AR)(2;> [1 _ B3 ]
integrals in Eq. (19) may be additionally simplified by pre- o S,L, 3(1 + 198B/9)
averaging over the angle {z. With this approximation, the 1
expression for the distribution of fluctuations takes the X — (26)
following form (I +13B/9)
WAR, 0p) = C' expf — [ds7s + dim For SiL;
2B/27
2 _ 2 _
2B sR(1 + (s 60 AR} 20 (BRsa, = <(AR)G>S ) [1 3(1 + 49B727) ]
341
where the new function f(¢g;6g) for various types x 1 27)
of tetrahedra is given by Egs. (A5)—(AS8) in Appendix A. (1 + 49B/27)
With this approximation we obtain
_ . 2 For S,
W(AR, 6r) = C" exp] —A[l + B(1 + 2f(¢s, Or)I(AR)
1
2n 2y — 2N 0
(AR, <(AR)G>S4 (1 + 5B/3) @8
and
m . ) Yy One should note that the coefficient B depends on the
(ARP) = 3 IO dOg sin Gpl1 + BU + 2f (ds: )] number of short chains in the tetrahedron. Here, ((AR)g)
T 24 (T . ) -3/2 represents fluctuations of junctions in the tetrahedron
Jo dOp sin Gp[1 + BU + 2f(¢s; )] built up from Gaussian chains, namely
. )

ARZ). = 210 2
where <( )G>SIL3 1+3¢ @
A= dsys + LN (23) ) <r§>0

(@RE)s1.= 3528 G0

represents the Gaussian part of the exponent and the
ratio of the non-Gaussian contribution to the Gaussian
one is

B = 2% ¢sFalA (24)

The integration in Eq. (22) may be performed easily to
yield

For SIL:;

o ) 2B 1
(AR )s,1, = ((AR)G>SIL3[1 3(1 + 3B) ] (1+B)
(25)

<r§>0

3+ ¢

(ARE), | = 31)

(ARE), = (13) /4 (32)

where ¢ is the ratio of the mean square lengths of the
short chains to long chains (0 < §<1)

E=(r*)slry, (33)

Fig. 2 shows the plots of the ratio ((AR)2>/((AR)é> for
various types of tetrahedra as the function of & for two
values of the parameter B (B =0.2 and B = 1.0). The
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Fig. 2. The plot of the ratio of fluctuations of the junction for the non-
Gaussian chains to the Gaussian ones ((AR)2)/((AR)%) as the function of
the ratio ¢ of mean square length of short chains to long chains for two
values of the parameter B (B = 0.2 and B = 1.0) and for various types of
tetrahedra S;L,, (containing k short and m long chains).

results show that for larger B the ratio {(AR)*Y{(AR)3)
decreases and non-Gaussian effects play significant role.
Also the increase of the number of short chains
decrease the ratio ((AR)?){(AR)%). Additionally, the
shorter are the short chains in respect to the long
ones (i.e. for small &) the smaller is the ratio of fluctua-
tions ((AR)>Y{(AR)%). The results presented here show
that the non-Gaussian behavior of short chains play an
important role for the elastomeric properties of bimodal
networks by restricting fluctuations of the central junc-
tion. The strength of these restrictions directs attention
to the importance of anharmonic modes in such net-
works. By analyzing experimental data on siloxane
oligomers, Sharaf and Mark [21] came to conclusion
in that larger than expected elongation moduli of
these networks can be explained by assumption that
segments between cross-links act as short chains. The
application of the Fixman—Alben non-Gaussian distribu-
tion to these short chains led to a good reproduction of
experimental stress—strain behavior. The theoretical
predictions of our model support these conclusions
and provide useful tool for the detailed analysis of
these effects in the future.

The big advantage of the proposed model is that all these
effects could be expressed in relatively simple analytical
from. The main simplification of the model is the assump-
tion that the ends of the four chains located at the vertices of
the tetrahedron do not fluctuate. This restriction can be
removed in the future for the more realistic models of
elastomeric networks.

Appendix A

The expressions for functions G and F in Eq. (18) for
various types of bimodal networks are shown later. Here,
SiL,, denotes the tetrahedron composed of k short (non-
Gaussian) and m long (Gaussian) chains.

For SlL3

F(1, 6y, r) = cos” bg,
FOI' Ssz

G(1,0g,¢¥g) =cos g (Al)

10 8
F(2, 6g, ) = (1/2)[ ?cosZ Or + §sin2 b cos” Y
442
— isin O cos 6 cos d/R],

9

2 22
G2, 0, Yr) = (1/2) gcos O + Tsm Or cos g

(A2)
For S3L1
11 2 8 -2
FQ3, 6, Yr) = (1/3) ?cos O0r + §sm 0
2 ) 27T
X | cos” g + cos™| Yr — 3
442
— T(sin Og cos Og
(A3)

x[cos Yr + COS((,DR — 2%)]}',

G@3, O, Pg) = (1/3){%cos O + 23£sin Ox

X[cos Y + cos((llR - 2%)]}

4 8
F(4, g, ) = (1/4)[ §cos2 6 + gsin2 6y cos? ¢R],

For S,

G4, 0, hr) =0 (A4)

By pre-averaging Eq. (19) over the angle iz, the distribu-
tion of fluctuations is given by Eq. (20) with a new function
f(¢s; Or) given by the following expressions:

For S;L5

f(1,6g) = cos® By (A5)
For SQLQ
2

2,68 = (1/2)[§cos2 b + g] (A6)
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For S3L1

8
(3, 6r) = (1/9)(cos2 Or + §> (A7)
For S4
f@,6)=1/3 (A8)
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